Dissipative solitons of the discrete complex cubic–quintic Ginzburg–Landau equation
نویسندگان
چکیده
منابع مشابه
Dissipative solitons of the discrete complex cubic–quintic Ginzburg–Landau equation
We study, analytically, the discrete complex cubic–quintic Ginzburg–Landau (dCCQGL) equation with a non-local quintic term. We find a set of exact solutions which includes, as particular cases, bright and dark soliton solutions, constant magnitude solutions with phase shifts, periodic solutions in terms of elliptic Jacobi functions in general forms, and various particular periodic solutions. ...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.
Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric space of the solitons is three-dimensional, that makes theirs to be easil...
متن کاملApproximation of Solitons in the Discrete NLS Equation
We study four different approximations for finding the profile of discrete solitons in the one-dimensional Discrete Nonlinear Schrödinger (DNLS) Equation. Three of them are discrete approximations (namely, a variational approach, an approximation to homoclinic orbits and a Green-function approach), and the other one is a quasi-continuum approximation. All the results are compared with numerical...
متن کاملContinuously self-focusing and continuously self-defocusing two-dimensional beams in dissipative media
Using the Lagrangian formalism, with a simple trial function for dissipative optical two-dimensional 2D soliton beams, we show that there are two disjoint sets of stationary soliton solutions of the complex cubicquintic Ginzburg-Landau equation, with concave and convex phase profiles, respectively. These correspond to continuously self-focusing and continuously self-defocusing types of 2D solit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2005
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2005.08.028